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Abstract

A regional mathematical model of transporting and dispersion of the atmosphere
admisture under non-local boundary conditions is discussed in this article. The new
three-dimensional mathematical model with non-local boundary conditions is given.
In case of two-dimensional model the existence and uniqueness of the regular solution
of the problem is proved.

We investigate a regional zonally averaged mathematical model of the Georgian
transport corridor pollution. In the mathematical model the influence of orography
is taken into account. The mathematical model is based on the solution of primitive
equations under non-local boundary conditions.
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As is known the European Union (EU) is one of the main ideologists and
sponsors of the transport corridor Europe-Caucasus-Asia (TRACECA). EU
considers TRACECA as a mechanism of the inter-state and inter-regional
collaboration and the guarantee of peace and stability. EU considers Geor-
gia as a partner in the development of the transport networks between the
Black Sea and Central Asia because of its geopolitical position. According
to experience of European transit countries besides great political and eco-
nomical benefits the transit of strategic materials causes great losses to the
ecological situation in these countries.

Environment protection is one of the most urgent issues of today. The
highest speed of production development has caused the environment pollu-
tion and ecological disbalance. Thoughtless increase of industry and energy
sector leads to such irreversible processes that threaten the life existence
on the earth.
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So the diagnosis, analysis of adverse substances and prognosis of their
space-time distribution is one of the main problems of modern science.
And numerical experiment, mathematical and computer simulation is an
efficient method for analysis, diagnosis and prognosis of the factors causing
ecological balance changes.

We consider the problem of adverse substances transfer through the
atmosphere using a new mathematical model.

As is known, a substance transfer through the atmosphere can be de-
scribed by the following equation [1,3]:

2 2
?)—f+ug—i+vg—j+wg—i = KT%—FKZ/Z—;—F%KZ% —aS+F, (1)
where S is concentration, u, v, w are the axial components of wind velocity
along axis Ox, Oy and Oz; and K, K, and K are the coefficients of turbu-
lent diffusion; « is the coefficient that determines the velocity of substance
concentration changes during the process of substance decomposition and
transformation; F'(x,y, z,t) are internal sources.

Let the axis Ox be directed along the earth parallel, the axis Oy be
directed along the meridian, and the axis Oz be directed along the earth
radius vertically upward. Let S(z,y,z,t) be intensity of aerosol substance
that migrates through the atmosphere along with air streams at the velocity
of U (z,y,2,t) ~ wi +vj + wk and we are looking for its distribution
in the cylindrical area G with surface I'. Let us denote its lateral surface
by >, let the bottom be denoted by », (when z = 0) and the top surface
by > (2 = H,H = const).

Suppose »; is a surface inside G, > N> ; = 0 and the distance
p(>-1 ) between ) ; and ) surfaces is strictly positive. Let ) and
> be diffeomorphic, and I(x,y, z) be diffecomorphism. Denote the coeffi-
cient of concentration decrease per unit distance by ¢°(z,y, z,t). Naturally,
q° depends on the physical characteristics of a source, its location, etc. The
simplest way to determine ¢ are experimental or empiric methods. It is
obvious that ¢° < 1. Naturally, in a normal ecological situation ¢° < 1 if
@ =[1—e(x,y,2,t)], where 0 < ¢ < 1.

Let us denote by ¢/ (xa’,yy’, z2’,t) the concentration decrease at point
(x,y,z) of the surface >  at the moment compared with its value in a
diffeomorphic point (2/,y,2") € >, at the same moment ¢. It is obvious
that )

g(w,y,2,t) = [1 - e(z,y, 2, )" (2)

Now, let us set forth the following initial boundary value problem: find
the solution of the equation (1) that satisfies the following initial condition

S(x,y,z,O) = SO(xay72)7 (ac,y,z) € Ga (3)
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boundary conditions

K== = ¢S on ZO:,0<t<T, (4)
dS
5—0071 Z,0<t<T (5)

and non-local boundary condition

S(x7 y7 Z? t) = q(x7 y7 Z? t)S(ZI7 y’? ZI? t) + @(m7 y7 Z’ t)’
(6)
(x7 y’ Z’ t) = I(m/7yl7 ZI)? O S t S T7

where U is given concentration, ¢ is constant, that characterized interection
pollution with earth surface.

So the non-local problem (1), (2)-(6) is being solved. Under some gen-
eral assumptions it can be shown that there exists the unique regular solu-
tion of this problem. Problem (1), (2)-(6) can be solved by Decomposition
Method. All aforesaid can be discussed in detail for a specific case.

Let G = [0,L] x [0,H], Q = G x [O,ﬂ, G= GUT, let T be the
boundary of G, ' =Ty Uy UT's U Ty,

I ={(z,2), € [0,L], 2=0}, 'y = {(z,2), 2 € [0,H]|},
s ={(z,2), z€[0,L], 2z=H}, Ty ={(z,2), x =L, z € [0,H|},

Lo=A{(z,2), x = z€[0,H]}.

Let the axis Ox have the direction of an average velocity of atmospheric
stream, Oz be directed vertically upward and Oy be perpendicular to the
plane Ozxz.

Consider a two-dimensional case of (1) in area G:

oS 0’s o __ 08 oS oS

—=K;—+—K,— - uv——w——aS+F t 7

ot x8x2+8z 9, "or  “o: © +F(z,21), 9
with initial and boundary conditions

S(z,2,0) = So(z,2), (x,2)€G, (8)
8—S:¢1, (.CL',Z)EF:;, OStST, (9)
0z

oS
KZE:O‘S_‘_QSQ’ (iC,Z) erla OStSTu (10)
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S(x,2,t) = ¢3(x,2), (v,2) €Tz, 0<E<T, (11)

S(L,z,t) = qS(xo,2,t) + ¢4, z€ (0,H), 0<t<T, (12)

where functions F(x, z,t), So(x, 2), ¢1, ¢2, P3, P4 are given.

So, our aim is to investigate the problem (7)-(12) and find its numerical
solution.

For simplicity of further demonstration let us imply that K, K., u,w ,
are constants. Assume that instead of (9) and (10) we have

S(x,z,t) = ¢1, (x,2) €Ty, 0<t<T, (13)
S(x,z,t) = ¢2, (x,2) €T3, 0<t<T. (14)

Consider the following iteration process

98 k+1) _x 92 9(k+1) K H2g(k+1) B o8 (k+1) B HSk+1)
ot " 022 2022 Yo Y02

—aS*t) 4+ F(z, 2, 1),

SED (2, 2,0) = So(x, 2), (x,2) €G,

SF (2, 2,t) = ¢1, (v,2) €Ty, 0<t<T, 15)

S (2, 2,t) = ¢pg, (x,2) €Ty, 0<t<T,
S (2, 2,t) = ¢, (x,2) €Ty, 0<t<T,
SEV(L, 2,t) = qS® (w0, 2,t) + ¢4, 2€ (0, H), 0<t<T,

(k =0,1,...), S%wq,z2,t), ¢1, ¢2 are given sufficiently smooth functions,
having continuous borders with the functions ¢; and ¢s.

In [4,5] it is proved that there exists the only solution of (7), (8), (11)-
(14) and S®) (x, 2,t) — S(z, z,t) at geometric progression speed in metrics
CO)(@). The uniqueness of the solution of the problem (7), (8), (11)-(14)
is proved on the basis of an analog of the first Harnack theorem [4]. On
the basis of the same analog (15) iteration process convergence is proved.
Using methods presented in [4-6] the existence and uniqueness of the regular
solution of the problem (7), (12) can be shown.

In order to solve this problem let us consider the following iteration
process:
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98 k+1) " 92 g(k+1) X 52 g(k+1) o8 (k+1) 59 k+1)
ot T 0x? T 022 “or Yo
(z,2) €G, 0<t<T,

SED (2, 2,0) = So(z, 2), (x,2) €q,

o5 k+ 1o
82 :¢17 (-T,Z)GF:&, OStSTu
(k+1)
K25 a5t gy (wz)ely, 0<i<T,
z

SE (2, 2,t) = ¢, (v,2) €Ty, 0<t<T,

SEL, 2,1) = g5V (@, 2,t) + ¢4, 2€ (0,H), 0<t<T,

k=12, ...

Convergence of (16) iteration process has not been studied. It is in-
teresting to prove practical applicability of the process (16) by Calcula-
tion Experiment Method, because on the basis of this method solution of
non-classical problem (7)-(12) can be turned into classical mixed boundary
problem at each time step.

For numerical solution of the problem (7)-(12) let us apply Decomposi-
tion Method, on the basis of which we build up averaged additive models.
Further, let’s continue with building up of decomposition difference schemes
of parallel calculation.

Devide interval [0, T by grid w, = {t,t = t; = j7,j = 0,1,..., K = [£]}.
Let the value of the function in a certain time interval Aj 1 = (¢;,t;41) be
denoted as follows: SU)(z, z,t) = S, Assume, that:

02 o
Ll:KxW - U% — E,

0? (17)
LQ:KZW_MO —OéQE,

z

L=1Li+ Ly, F(x,2,t) = Fi(x, 2,t) + Fa(x, 2,t).

Let us formally devide the problem (7) (12) into two subproblems with
operators L; and Ly in time interval [t;, ¢ 1].
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Consider the following additively averaged model for the problem (7)-
(12):

(+1)

1 .

S LU R, 0<a<L sel0H) teAia, (1)
S£j+1)($; Z, t]) = P1(j+1) (.CL', thj)v (.CL', Z) eé’ (19)
S%j—i_l)(oazutj) = ¢3(Z7t)7 0<z<H, tec Aj+1’ (20)

STV, 2,15) = qST (w0, 2,t5) + ¢a(2,1),0 < 2 < H,t € Ajyq, (21)

1 85(j+1) )
S — = LSVt 4R, 0<z<H, zel0,L], teA, (22)
S§j+1)(m,z,tj) = P(j+1)(x,z,tj), (z,2) €q, (23)
as(j-‘rl)
;Z le=0= ¢1(z,t), 0<ax<L, telj, (24)
8S(j+1) )
R e aSTV |y +éa(x,t), 0< 2 <L, t € Ajp1, (25)
POt (2, 2,15) = 0,5[7 (, 2,t;) + 5 (w, 2, ;)],
(26)
(.] = 07 17 27 "'7K E [%])7
(@, 2,0) = 8 (,2,0) = So(x,2), (x,2) €G . (27)
The function P(z,z,t) is determined in the following way:
P(x,2,t) = 0,557 (2, 2,1) + SV (2, 2,1)), (28)

where (t € Aj;1,7=0,1,2,..., K —1), will be called the solution of the split
problem.

It can be shown (see [7]) that if initial data are smooth enough, addi-
tively averaged model (18)-(28) approximates the problem (7)-(12) and

max |S(z, z,t) — P(x,2,t)| = 0(7).
Q

So, in order to solve two-dimensional problem (7)-(12) we have to solve
two one-dimensional problem. The first one is the transfer of substance
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along axis Ox and the second one is the transfer of substance along axis Oz.
In the first case we have non-local boundary conditions, and in the second
case we have classical boundary conditions. We can solve these problems
simultaneously in the interval A, 1). Therefore, if we replace each problem
with its difference analog, we will get decomposition difference scheme or
locally one-dimensional parallel calculation scheme.

The next step is the construction of a parallel calculation scheme and
its investigation.

Let us introduce the grid wy {(x, 2) | * = x;, 2 = 2k, ®; = ihy, 2z, = khas,
1=0,N1,k=0,N3,h; = N%, hs = N%} Denote the value of the function

Wz, z,t) in (x;, z) at moment ¢; by I/VZJ]C We will use the following known
notation:

J J J J
Witk =Wir Wik =Wk W
hl - i,k hl - 7,kT’
J _ W J o _ i
Wikin = Wik o Wik = Wik j
— =W =w’
— Wik ik
hg hs ; (20)
Jj+1 J J Jj—1
Wik =~Wip 5 Wi =Wooo
— = Wiw T = = Wi
Wipi e —Wicae W Wikt1 — Wik W
2hq z’,k:%’ 2h3 i,kg.

On the basis of the additive model (18)-(27) the following parallel locally
one-dimensional calculation scheme can be constructed:

CjJFl _ P] i1 i1 i1
% = KmC{;; — uCi; - a10{+ + Fl*v (xvzvt) S Wh,XWT’
pi = %(C{+C§),

C1(0, zg, tj41) = d3(2k, tj+1), (30)

Ci(L, 2z, tj+1) = qC1(wo, 2k, tj41) + da(2k, tj11),

(k:07N37 ]:OaK)
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Cj+1 _ P_] . X .
-2 - = chj—i__l — wcjjl - 04205+1 + F2*7 (a:,z,t) € Wh,xWT’
T 22z 2z

1
Pl =2 (c]+ ),

J+1 _ g+l
W = ¢1(x3,t), (i=0.N, j=0.K), (31)
it il ,
K, 241 hs S acgj_le + ¢2(z4,t), (i=0.Ny, j=0.K),
(32)

where P7 is considered to be the solution of difference scheme Fz; =
Fy(wi, 2,7 74172) (B = 1,2). We also assume, that coordinate ¢ coincides
with a node of the grid along axis Ox and xzg = (N7 — m)hy; m is the
natural number,that changes incompliance with the step of the grid.

In order to solve the system (30) the classical method of sweep is applied.
For solving (29) classical formulas should be constructed. Not dwelling on
deduction of the latter, let us adduce formulas for general case.

Resolution of difference scheme (29) can be reduced to resolution of the
following system.

a1R; 1 — CiR; + b;Ri 1 = b; (’L =1,N; — 1),
(33)
Ro = +p1, Ry, = m2Rn,—1 + Ry, —m + 2.

The system (31) can be solved on the basis of the following formulas
(see [6]):

Ri = a1 Rivq1 + Biya,

b;
1= 5, =0,N; —1),
Qit1 Ci — a0 (¢ 1—1)
;0 + b;
ﬁi—i—l - 0/6 ) (lZO,Nl—l),
i — ;0

Ry, = 028N, + MBN, —mi1 + He
Yol — (malNy + man,—m+1)’

ANy —m 1= QNy X * - X QN —mt 1,
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BN1—m+1: QNy_pyq X X QN 18y T+ Bn-1-

Here a;.b;,c; are expressed trough coefficients of the difference scheme.

Analysis of synoptic process in the Caucasian region shows that Geor-
gian territory is dominated by western and eastern meteorological processes.
This is stipulated by the geographical location of Georgia and features of
its relief.

The north Georgian territory is bordered by Great Caucasus Range di-
rected along parallel. It is a natural obstacle for meteorological processes
coming from the north. Air masses intruded from the north are slowed
down by Great Caucasus Range, they pass round it and enter Georgian
territory from the west and the east. To the south of Georgia, Thrialeti
and Meskheti ranges are stretched along the parallel, which, together with
Great Caucasus Range, create natural ”canyon”, that also is Georgia’s
transportation corridor (GTC). In this corridor air masses are mainly car-
ried from one place to another zonally. These movements are hindered by
Likhi Range directed along meridian (that divides Georgian territory into
western and eastern parts).

The above said allows us to make simplifications while investigating the
problem of mathematical simulation of adverse substances transference and
consider two-dimensional numerical model for air masses zonal transference
taking into account characteristics of the relief (Likhi Range).[1-3].

Now let us consider the following specific problem: migration and diffu-
sion of adverse substances ejected from a point source of power m; located
at altitude h in the region of nonhomogeneous orography. Assume that
meteorological situation stipulates transference of substance in the atmo-
sphere in the direction of average wind velocity (zonal transference or winds
of prevailing direction), that is v = 0. Under these conditions substance
transference in the atmosphere is described by equation (7).

Let us remove limitation that we have imposed on v and w components
of wind velocity and coefficient K being on constant. In (7) determine u
and w by means of a complete system of Hydrothermodynamics. In case
of homogeneous orography the set problem is described by the following
system of equations [8-10].

2
8—S+u§+wa—S:KaS aKzg—S
z

ot "' TV~ KeoE T o — o, (35)

2
ou ou 8u_ 18P+K6u+2K26u

o o TV T par TR T e e B9
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Op , 9(pu) | O(pw)

a or o Y (37)
Op B
5, = P9 (38)

00 00 00 0% 0 00
R il i 0wt o o (39)

P = pRT, (40)

where P is atmospheric pressure, p is air density, R is specific constant of
dry air, © is potential temperature of air, T" is temperature, g is acceleration
of gravity.

We consider the problem of transference and diffusion of adverse sub-
stances in an atmosphere for the Caucasian region, where one of the de-
termining factors for circulation process particularities is orography. In
order to reflect correctly the impact of complex relief in the mathematical
model, let us rewrite (34)-(39) system in a coordinate system. 2’ = z,z =
z —r(z),t = t. (where function r(z) describes nonhomogenity of the earth
surface). If we rewrite the obtained system of equations in isobaric coordi-
nate system (z,¢,t) where connection between ¢, and z is determined from
(37), then we’ll receive [3,10]:

08  oJuS owS

5t o T =AS-as, (41)

where ¢ = P% is a vertical coordinate, Py is a value of pressure on 1000 Hpa

of surface, @ is relative geopotential, A = Kxaa—jz + %KZ%

While making prognosis of atmosphere pollution it is very important
to have an information about adverse substance concentration behavior in
the near-earth and border layer of the atmosphere.
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In the near-earth layer vertical thermal streams and momentum are
maintained according to altitude, and vertical component K,(z) of turbu-
lent stream variation coefficient increases in proportion of altitude [1,8].

z
K,(z2)=v+ K;—,
21

where v is coefficient of molecular diffusion; K7 = K,(z1); According to
M. Iudin and M. Shvets model above near-earth layer there exists some
external scale of turbulence, that helps to restrain vortex movements and
above near-earth layer K, = const and K, = v + Kﬁ;—i, where h; is the
height of near-earth layer [1].

As a result of theoretical studies I. Kibel has received analogous formula
for K,(z) [1].

Kl(hil)lfg2 when 2z < hy,
K.(2) =
K when z > h,

where 0 < e <1 and by selecting its values it is possible to select ther-
mal stratification of the environment. We will use the last formula in our
mathematical model.

(40)-(44) can be integrated in the area G (point source is placed on I'y
(at point = 0,z = h)), that satisfies the following initial condition:

S li=o= So(x,<), u l—o=1u"(z,5), © i—o=O0"(z,<). (46)

Because of not having aerological observation results, as a rule, distribu-
tion of adverse substances concentration go(m, ¢) in the area G is unknown.
To avoid this inconvenience while making calculations under the numerical
model, we act in the following way. As substance concentration change in
atmosphere is of quasi-stationary character over a time period, it is pos-
sible to consider a stationary problem. Taking into account the fact, that
we gave some information about vertical distribution of wind velocity and
from vertical velocity w = wy_wyp (w, is convectional movement velocity,
wy, is velocity of substance precipitation by gravity) we take into consider-
ation only velocity of precipitation by gravity, then we can rewrite (34) in
the following form

850 850 N 0 aSO _

(46) can be integrated under the following boundary conditions:

So(z,00) =0, (48)
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080
s |lz=0= 0, (49)

So(x, 2) |g=z,= Sp(x0, 2). (50)

In (49) function S§(zo, 2), in its turn, is the solution of the following
simple stationary problem:
05, o . 05§
= —K 1
Yor T 92 F 9z (51)
that can be integrated with the following boundary conditions:
05§

5 T—00 P Kz—o r— 9 2
S lomoo— 0 0[50 0 (52)

S lomo= —18(2 = h), (53)

where my is power of adverse substances cast out from a source located at
altitude h
0, z#h,
6(z—h) =

oo, z=h.

If we assume that u = const, K, = const in (50), then we will receive
the known solution of (49) with the boundary conditions (50) and (51) [1,3]:
u(h—z)2 u(h+z)2
So(x’ Z) — L 6_ uKyzx + e_ uKyz . (54)
TwK,ux
Stationary problem (46) with boundary conditions (47)-(49) can be inte-
grated by numerical methods using formula (32) that is similar to a classical
one.
Generally, problem (40)-(44) is integrated in G with the boundary con-
ditions:

05

5= 0, w=0, when ¢=1, (55)
oS ou

—_— = —_— = h = 0.

e 0, e 0, when ¢=0.5, (56)
S =80y =u0(t,¢), when x=0, (57)

05 _, du_, 00 _

70 =0 %—0, when x = L. (58)
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Boundary conditions (56) and (57) correspond to the case, when sub-
stance ejection source is placed on the boundary I'y of area G. If in the area
G we have additional mg powered source placed at the point © = xq, z = ho,
then in (57) boundary condition g—g = 0 is unreal. Indeed, space distribu-
tion of substance S(z, ha), received by solving non-stationary problem (46)

with boundary conditions (47)-(52) is represented on Fig.1.

Fig.1.

As seen from Fig.1, % # 0 in the interval [a,b]. If in the area G the
source of power ms has such a location that boundary I's gets into interval
[a,b], then it is necessary to use non-local boundary condition (12). We
come to non-local boundary conditions in certain particular problems, when
there is, one source at the internal point x = xg, 2z = h; of area G.

We also need non-local boundary conditions, when in the vicinity of
boundary T'y or I's substance concentration variability gradients (by ther-
mal sources or orography) are considerable. Generally, distribution (dis-
semination) of adverse substances in space at a given moment depends
on many meteorological factors (turbulence, wind velocity, clouds, thermal
layers restraining aerosol flow etc.).

From experimental observation results, it is know that concentration
of any aerosol (among them-radioactive substances) decreases as altitude
increases, but this variation is not generally monotonic, it does not con-
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form to any law of nature [1,8]. Aerosol is accumulated in the atmosphere,
if there exist isothermal layers or if temperature inversion and, generally,
temperature gradient reduction takes place (then in these and below lay-
ers the aerosol is intensely accumulated). While simulating these types of
problems (problems of mesometeorology), apparently, it would be advisable
to apply non-local boundary condition on I'; boundary of GG area.

Now let us consider the particular case of (34) integration, when un-
known functions are determined from the following equations of movement
and continuity:

ou ou ou 0P 0%u 0 ou

o T tor T T T T e T o g (59)
ou Ow
%—FE—O, (60)

where ® = R Tuper IN P, Taver (2)is anaveraged along axis Oz, variable
according altitude, known for each experiment function.

In (58) we assume, that for every simulated meteorological situation g—f
is a known function. (34), (58), (59) describe transference of substance into
the area GG, having homogeneous orography in case of established meteoro-
logical processes. Our aim is to study the features characterizing the prob-
lem of adverse substance migration in atmosphere with non-local boundary
conditions. (34), (58), (59) are integrated in the area G with the following
initial and boundary conditions:

S i=0= S0, u [t=0= uo, (61)

0S50

E—O, w=0, when z=0, (62)

ou

S =0, 5—0, when z=H, (63)

S =250(0,2), w=wup(z), when x=0, (64)

ou

i 0, S(L,t)=4qS(xg,2,t), when z=1L, (65)
x

where, ¢ is determined from (2).

Problem (34), (58), (59) with the initial and boundary conditions (60)-
(64) is solved on g¢o grid @; = i x Az, z, = k x Az, t; = jx At, i =
1,...N, k=1,...,. M, j=0,1,... by numerical methods using Lax-Vendrof
finite-difference scheme [8,10].
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By numerical experiments quantities and physical constants had the
following value Az = 500m, Az = 50m, At = 60, K, = 10, N = 400; M =
100.

According to the proposed model numerical calculations have been car-
ried out. Those calculations were differ from each other by values of pa-
rameters and constants included in the numerical model.

In (60) the value of Sy is determined from (46) by boundary conditions
(47)-(49). In (49) S%(zq, 2) is given by the following formula:

St (w0, 2) = %S(Z — hy), (66)

where mg is the power of the source located at altitude hy (z = xg,2 =
hg) e G.

According to the height initial distribution of component ug of wind
velocity is given depending on the character of model problem (in different
experiments ug have different model profiles according to height). In order
to give horizontal character to the distribution of ug we use the values of
well-known for meteorologists distribution of the vertical component of the
velocity and continuity equation (59). From synoptic materials it is clear
that in troposphere w is distributed by height as follows: on the earth sur-
face w = 0 (in case of relief w = w), at higher altitudes its value increases,
at medium level of troposphere (3-5 kilometers) it achieves maximum value
Winax and at tropopause it is in the vicinity of zero again [1,8]. We have

[1]:

WP(2) = Winin + Winax (1 + 1/n)"2(1 — 2)™, (67)

where n is the parameter, characterizing the tendency of w fluctuation by
height.
Space distribution of ug is given by the following formula:

uo(x,2) = uj(2) - uj(), (68)

where value of uy(z) is obtained by means of (58) and (59), and u{(2) is
defined from the tested problem.

In order to determine parameters ¢ and ¢4 in (64), the following problem
is solved at every step t of numerical integration :

u(])asgj) _ 3 asgﬂ)
ox 9z ° Ox

(69)
with boundary conditions:

25

| | m
SV eon=0, - leo=0, 8 o= 2z = ha),  (70)
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where S;”’-is concentration of substance ejected from the mg powered source
located in (x = xg, z = hy) point, u9) is determined at each time step from
(58), (59).

Values of Si(x,z) at each j iteration obtained after resolving (68) en-
ables us to determine values of ¢ and ¢4.

Numerical experiments were carried out. They deferred from each other
by power values of the first and the second sources and location of the
second source. Here we adduce results of the experiments. In each case mq
powered source is located at point x = 0,2 = hy, and mgy powered one at
point x = 9L/10,z = hy. Their power values were m; = 2msy in the first
case; in the second case —mj1 = mg; in the third case m; = 0.5ms.

Let us compare numerical calculation results with the solutions received
under classical boundary conditions (the rest of parameters are same). In
particular, (34), (58), (59), where solved under boundary conditions (60)-
(64), but in (64) we had 221 = 0 when z = L.

In order to compare numerical calculation processes during these ex-
periments, we were calculating integral characteristics of prognosis fields at
each time step; particularly, tendencies of meteoelements variation in the
area (G in average time

N
- 1
9= A7 Z | $ngroe = Sig | (71)

=1

where ¢ = (u,w, S,S51)" is a matrix column, N is a number of grid points.
In [8-10] it is shown that if in finite-difference scheme the following
quadratic quantities:

N
1 2 2
N
9 1 Own  Oun g

are maintained over time period then nonlinear instability does not occur.
In each experiment we were examining maintenance of (70) and (72) quan-
tities during period of prognosis. Calculation results show that relative
error of Q2 did not exceed 1.73% in average within physical 72 hours, and
that of the FK did not exceed 4.3% in the same time-period. This fact in-
dicates that numerical solution was stable (comparatively big relative error
of EK quantity can be attributed to limited sizes of rather than exposure
of nonlinear instability).
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As numerical calculations showed, ‘?1} variation during prognosis pe-
riod with both classical and nonlocal boundary conditions for of each three
cases were nearly of the same character. But the difference between the
results of calculations were more distinctly revealed, when so, in order to
prevent the Fig.2 from being overloaded, we adduce the calculation results
received only in this case:

Fig.2.

As we can see from Fig.2, under classical boundary conditions ‘?1} vari-
ation has more instable, increasing character (line a). And under nonlocal
boundary conditions its variation is in the vicinity of initial deviation after
first 6 hours.

Prognosis fields analysis shows us that in case of classical boundary
conditions, in the vicinity of boundary I's unreal increase of concentration
values took place, which was not observed in case of nonlocal boundary
conditions.

The obtained results allow us to conclude, that while integrating system
(34) ,(41)-(44), describing adverse substances migration in GTC, non-local
boundary conditions should be used.
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