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Abstract

In the present paper the question about finding the window width in the Rozenblatt-
Parzen’s estimate is considered. The constructed estimate depends only on the choice.
Its optimization is proved in the Ls metrics.
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1. Let X1, Xy, .., Xp, X; = (X, .., X%) i = T,n, be independent
observations of the random vector X = (X, ..., X®)) from R, with the
unknown density f(x),z = (x1,....xp).

Let f(x)belong to the space La(R,) of all functions square integrable
with respect to the Lebesgue measure.

Consider the statistics [1]

ulr.an) = 3" K(ane - X,), 0

i=1

as the estimate of f(x)with respect to the given n observations, where
K(z),x € Ry, satisfy the conditions formulated below, and a,, — oo is a
sequence of positive numbers. The value a,, is called window width.

The estimate (1) contains two parameters K and a,, which are to be
chosen in some optimal way. It is known that the optimal (in the sense of
an asymptotic mean square error of estimate) kernel has the form

1 —1 T T
_ N(1 — . . <1
K, (z) = { 3C’p p+2)(1—2a" -x), J:T x < 1,
) Tt -x > 1.
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where C}, is the volume of unit p-dimensional sphere.

If p=1,1ie. C; =2, then K;(z) is the Epanechnikov kernel [2] (see
also [1]).

The expression of the optimal window width a{)[1], obtained with the
help of minimization of the asymptotic expression of the mean value of the
integral from the square error (m.i.s.e):

Ulan) = B [ (fulasan) — ()P

is also known (here and later on [ = [ ). It contains some a priori data

that are not always known to the statistician. Below we give a method
of the sampling of the window width realizable with sampling (i.e. with-
out any knowledge of the a priori data obtained for which the estimate
is asymptotically equivalent to optimal. In other words, on the basis of
sampling X7, ....X,, there are obtained estimates {a} of the elements of
the optimal sequence {a2} for which m.i.s.e. of the obtained estimate is
equivalent (at n — oo) of m.i.s.e. of the estimate for the optimal sequence
{a}.

2. In the monograph of E. N. Nadaraya [1] the asymptotic expression
U(ay,) is given without a proof.

In this article there is given a method of proof of Theorem 1.2 and
Lemma 1.1 from [1] that are more effective than the method of proof of the
analogous theorem and lemma developed for one-dimensional case in the
mentioned monograph.

Let

where K; € H.

Ho={pio(-)=¢(0), te R, [old=1

sup |p(t)| < oo, /tigo(t)dt =0, i=1s—-1,
teR; .

Jt5o(t)dt # 0, [t ]p(t)dt| < co, s > 2 is an even number .
The family of the functions [3]

2

Ko(r) = 3/8<§)1/2 {(3—C)+(3c—5)%}, 2 < /2,

0, 2] > /2.
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where ¢ € [1,3] belongs to Hy. The Bartlett’s function [4] K(z) = 3(1 —
22?%)(= o), |z| < 1(Jz| > 1) belongs to Hy respectively for, and the
Nadaraya’s function [1]

5/ 2, 1 1 2
Klz) = =2 R A e
(@) =3 < 37 T " )w/_zwe ’

is a function from the class Hg, etc.

We will assume that f(x),z € R, has all partial derivatives up to s-
th(s > 2) order inclusively. In addition all partial s-th order derivatives
are continuous, limited and belong to La(Ry). These assumptions will be

denoted by (p ),

Theorem 1 ([1]). If f(z) € W and Kj(x) € Hs,j = 1,p, then

2

P
a
/HK2 du+a_2s / Z Jax dx+o <7n+a;25

at n — oo, where,

a; = /)J:SKj(J:)da:, j=1,p.
Proof. We have
Ulay) = / Df,(z,ay,)dx + / [Efn(x,ap)dx — f(a:)}Q dz,

where

‘/.Dfn(a:,an)da: = %/E}_[KJQ (an (q;j _Xl(j))> _

According to Fubini theorem

Dn:—n ap/HK2 ap (x5 —uj)) f(u)du dx:ﬁ/HK?(u)du.
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It follows from generalized Minkovskii inequality, that
2\ 1/2

1 u ti
|En‘§E’/ / jl;[lKj(tj)f<wj—a—]>dw dt =

n

1/2

1/ T [
:;‘/ F2(u)du JHI/ | K5(t5)] dt;

So
p

/ Doz, an)dz = %" ’/f[lKJZ(u)du +o <%> . (3)

Later, by Taylor formula with the remained term in the integral form
we have

n Qan

p
t t
Efn(:v,an) = /HKJ(tJ)f <£C1 — a—l, ...,iUp — _p) dtl...dtp =
T =1

. P tl 1
:/HKj(tj) ST~ fla) + Ry(t) | dty.dty,

anll!

where

l l l
=1ty

Since f(z) € W and Kj(x) € Hy, j = 1,p, we can write

Efp(z,an) — f(x) =

1

_ / / 3 l—llé—f ﬁKj(tj)u _)1p0 <x - uai> dudt.

0 l=s "=l "
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Therefore
2

/ (Efp(x,an) — f(x))? de = % / / D,,(t, v, uy, us)dtdvduidus,  (4)
A A

7 .

where
@, )= 3 S B k(1)1 - ) — ) x
n(t,v,ur,ug) = 2 2 NN uy Uz
1|=s |l2|=s
% (/ f(ll)(x)f(b) <3; +u2aK — Z—lt> da:> , A =R, x[0,1].
(5)

‘We have further
[ 1@ <a: Fup “—ﬁ> o~ [ £ f"aa| <

([ (] (e rocz-22) o) )

(6)

It is well known that any function from Ls is continuous in Ls, hence for

every fixed u, v, u1, us holds

t
Hf(b) <£16+u2ai - U1—> — f®)(x)

— 0
Lo

n an

at n — oo.
It follows from this and (6)

/ FO () £ ) (:c +up—— ulai) dr — / FU (@) ) () de. (7

n n

Moreover

| Dy, (t, v, u1,u2)| < Z Z |t|

[l1]=s \12|—s

<) [ (100@) s [ ( f<12><x>)2dx> "

These facts permit to apply Lebesque theorem about of the majorized

convergence in (5). Thus we obtain
2 —2s 1 ¢ 8Sf : —2s
’ (Efp(x,a,) — f(x)"dx = a, G2 jzlaj(??; dx + o (a,”*).
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So
A 9
Ula,) = - / HKj (w)du+
J G2
’ 2
1 Sf ab
) n )
ran [ | Doy | aoto(Sren®).
j=1 J
The theorem is proved. [l

Corollary 1 If f(z) € W2(2) and K1(z) = Ka(z) = Ko(z) = (= 0)
respectively for |x| < 1(Jx| > 1), then from the Theorem 1 the result of G.
M. Mania [5] follows .

Now we will define the optimal value a,, = a®

n, Minimizing the asymp-
totic expression (at n — oo of m.i.s.e. U(ay,).

Lemma 1 ([6]) . Let A, B, and 3 be given positive numbers. Then

g (44 5:%) = 09 { (5)] @}—

and the minimum is reached for the value of x

_ (BB\ =7
Lmin = M .

Assume
2
1 . P 9 1 . p Sf
A:E'/HKj(u)du, B = )2 / Zaj&vs- dz,
jil j:l J
a=p, p=2s.
Then from Lemma 1 we obtain
1
0 _
= 9 g =
@) =007 = 5
2 -1 (8)

P s . P
2s+p ) f 2 2
Frr =20 / ]-2—1: e | @@ / jl:[lKj (u)du

If we substitute the obtained optimal value a2 in the right hand of (2) we
will have

U(al) = R(s, f,k)n" %1% + o (n——+> 7
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where
2s

. P
Ris, 0 = 25+ (27" [ [ W3 wdu |
Ju

1
2 p 2s+p

P s
x | pi(s!) 2 / 2%67{- dx
7 \j=1 J

Thus the optimal estimate of the density f,(x, a,) is the integral consis-
tent of the order N = n2?%/(25tP) je. N -U(a%) — 0 to the finite nonlinear
limit at n — oo.

Lemma 2 If f(x) € WP and Kj(x) € Hy, j =1,p, where K;(x), j
1, p have continuous partial derivatives up to s > 2 order inclusively, K;(x) —

0,i=1,s—1, j=1,p asx — oo and [ z*

5) C
; (x))dx<oo,j_ P
then n — oo.

2 2
.| P s | op s
/ E osz—a f%(;vs, an) dr — / E ozj—a f%(;vs, an) dx
7= J 7 =1 J

at n — 0o.

Lemma 2 is generalization of the corresponding Lemma 1.1 of Nadaraya

[1].
Proof. From the identity
pts 1(s) F
an' K/ (Tm — um) 1;[1 Kj((zj —uy) ap) f(ur, ...;up) =
J
L o’ f(x)
= aﬁjl;ll Kj (apn (vj — uj)) o5
0 s—! o (5=7=1) f(z)
_% Zlaqu PG, (am(zm _um)) P T s—i-1 H K (an (x5 — )) )
j= m
J#m

taking into account that K](-s)(:v) — 0at |z] — 00, s =0,1, j =1,pit

19



AMI Vol.4, No.1,1999 Absava R.M.

follows 0 fo ) _
@ an) [ pisge(s) N
ey / aP T K (T, — U )an) X
p
x [T Kj(am (x5 —uj)) f(ur,...,up)dug, ...duy =
j=1 (9)
itm
_ ‘ (s) t
— [T (o4 =),
J i
where

T t=(t1,.-, tp).

Further, we have

2
. P ' 8an($,an) B
/ (jzloz]Eaxj ) dxr =

:Za§/< %) to+ Yo [ 55 p0teas

j=1 J i#j

Thus, it remains only to prove that

6sfn 0° fn (s) (s)
Eax o 5 /fZ (x)f] (x)dx

at n — oo.
It follows from (9)

/Easfn 8an //K dtdu/f(s s>< ;nu> "

(10)

where K(t) = f[l K;(t).

Since, analogous to (7)

[0 (s t;n“) az— [ 106 @i

‘ / O S + ——)de| <

n

and
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< K@) |K @) (/ (19@) e [ (ff)(z))de)l/Q,

from (10) and Lebesque theorem we obtain

" 0% fn 0% fn " a(5) x o(s)
| E du? E ot dr — / fi7(2) f;7 (2)dz.
The Lemma is proved. U

We will use the following

Lemma 3 ([1]). Let random variables have absolute moments up to the
m-th order, in addition to probability unit n, > d, > 0, I, > 2d, > 0 and
dn — 0 at n — oco. If E|np — I,|™ = O(a™), where af = O(dy,) for some
k>0, then En% — I¢)™ = O(al), where —ap < a < 1, ag > 0.

3. Now we shall get down to solving the problem formulated at the
beginning of the paper. We shall assume that f(z) € W and Kj(x) € H,
satisfy the conditions of Lemma 2. Consider the obtained optimal value
(8), a?z =0n",y = ﬁ
0 = 0(f,k) is unknown we will estimate it by sampling Xi,..., X,,. Let
{tn} be a sequence of positive numbers such that ¢, — oo at n — oo,

(QSJlrp)Q. Further, let {b,} be a sequence of positive

numbers converging to zero and satisfying the condition

supplying the minimum of m.i.s.e. . First, since

where t, = o(n®),a =

nby, > C >0

(here and later C,Cq, Co, ... will be positive constants).
We shall introduce the notation:

(), \_ O fu(z,ty,) (), N (s)
P ( ) p

Op(u) =D a7 (u) [[ Ko (u).
j=1 r=1

r#]

The properties of estimates of f, and fé‘:) (x) defined by (1) prompt us
to consider the sequence of estimates of §2TP of the form

2
. p
éTQLs—',—p = I(k, s) / Za]frgj)(x) dx + by, | , (11)
. et
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where

Let’s assume
2

3 =) | [ | L anld@) | drbl,
/&

1 5 t?z(QSer)

n = 0,07, 0 =0,n", v = TS = = o(nf(

25+p71)7).
2s+p " n

It is not difficult to show that

02517 = |(k, s) [/ Q2 (x)dx + bn] )

(12)
0257 = I(k, 5) [/ (EQ2(2))* da + bn} ,
where b
s+p
() = " @ (1 (- X)), (13)
i=1
Let i
o (u) = / D), (v)Pp(u — v)dv,
- (14)
T (u) = tPth / Dy (tn (u—V))f(V)dV.
Then by the definition of €, (x) we obtain the correlation
ETy(x1) = t,,%° / (EQy(2))? da. (15)

Lemma 4 If f(z) and K;(z), j = 1,p satisfy the conditions of Lemma
2, then

00— 0" = 0, (16)
where m > 0 is an integer number.

Proof. Using (13), (14) and (15), we obtain
. 2m
E U (Qn(x))%x—/ (EQn(m))Qdm} =

22
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2m

=thmp n_QZthq)* (X; — X;)) — ETy(21)

7j=1i=1

From this, according to the inequality

m T
D

k=1

m
S m?"*l Z |ak|2 ,
k=1

where > 1 is an integer number, we find

B[ [ @untae [ o] <ot (B0 + 52),

where

2m
n o n n

E(l) - 7222,517@* (tn(X; — Xi)) — 12Tn(a:i) )

7j=11i=1 =1

nt Z (Tn(Xj) - ETn(Xj))

J=1

Let us estimate each of ET(LI) and qu) individually.

Taking into account the easily verifying inequalities

2

p(u)‘ < 02

T, (u)| < Csth,

23
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we have

tp
sl

2m

(18)

n

2m
E®) =F E( 1 Ztﬁq);;(tn(Xi—Xl))—Tn(Xl)> /X1

n—1~*4
=2
It is clear that t,®; (t,,(X; — X1)) —T,,(X1) are independent identically
distributed random variables for the given X;. In addition

E (05 (tn(Xi — X1)) — Ta(X1)/X1) =0

(]

Therefore for the estimate of ES we can use the theorem of Petrov [7]

relating to the estimate of the moments of the sum of independent random
variables.

Theorem 2 (Petrov V.V.([7])). Let X1, X2, ..., Xy, be independent ran-
dom variables, EX, =0, k=1,n,p > 2. Then

n p

E < CpnP* 1Y EBXl”.

k=2

k=2
By the theorem of Petrov and (17) we obtain
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2m
EY) =E (n_lzt%* (X; — X1)) — T(X1)> /X1 <

m—1

< C(m)mx

x B

ZE\tpé* (X; — X1)) — Tn(Xl)\zm/Xlig

N nm—l 9 %p m

So
2\ ™
EL =0 (i> . (19)
n
Analogously we find
2p\ ™
EX =0 (i> . (20)
n

Further substituting (19) and (20) in (17), we get

{/ (Q(2))? da — / (E'Qn(x))de] 2m _

£2m 225+ \ " .
=0 <tism?;’—m> =02 =0 (7'73) . (21)

n

121 +p and 025+P

Hence by definitions of we obtain from (21)

n

E ‘égs-i-p _ 91218+p)2m =0 (7_2m) ) (22)

From this, in particular, we have

A 2
Bloz - gzt = (). (23)
Th 525+p {2s+p) 1
us, smce 9 > l(k S)bn,Tn/b < Cﬁ CGW < 07,
i.e. 72 = O(by,) and by virtue of Lemma 2 925+p > 9 , for n > N, then
according to (23) and Lemma 3 we obtain (16). O
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Corollary 2 0, is a consistent estimate for 6.

Theorem 3 Let f(x) and K;(x),j = 1, p satisfy the conditions of Lemma
2 and in addition let the functzon
p
Ki(x) = pK(z ZJ:Z ; HKT(J)T)
r=1
reti

admit a nondiecreasing and integrable majorant Ko(z), Ko(+x) = Ko(x),
in the interval RY. = [0,00)P. Then

U(én) ~ Ulay), (24)
at n — oo (relation oy, ~ (3, means that, 3> —1).

Theorem 3 is generalization of Theorem 1.3 of Nadaraya [1].
Proof. It follows from (2) and lemma 2 that 6, — 0 and V(oy,) ~

U(al), where o, = 0,n7, al = n?, v = From the representation

n 2+p

U(&n) _ Ef (fn(xaan) - fn(xvan)) (fn(xagn) - f(x)) dx
Ulon) 17 U(on)

E [ (falw,dn) = falz,04))* da
U(oy)

+
and the Cauchy-Schwarz inequality it follows that it is sufficient to show
B [ (fuletn) = fule, o) = ofn”27) (25)

for the proof of (24).
By the finite increment formula and Cauchy-Schwarz inequality we get

£ / (o) = fulr, om)) 2 dir <

. 2 2
/ (8fn(x,u)> @
. ou u—tn

where random variable &, lies between a,, and o, : |0, — &,| < |an — op.
But by (16) and 72 = o(n~(2tP=17) we have

< /2 EY/2 (én _ ‘en)éln?w,

A 4
EV/? (Gn — Hn) = O(72) = o(n~ P~ 1) p > 1.
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Therefore it remains to show that

[(5)

Let A, be events stating that én > g and let I4, be the indicator of
event A,. Let, further, A\, = %'rﬂ. It is easy to see that

e [] ()’ o] -

24 2

. pfl n
— b &n _x _ o (B 4 @
w5 I N R G

nE =0(1). (26)

- 12

. fpfl n 2
BYW=F / ( "N K (6 (x_X,»))> drly, |
' i=1

n

- 12
n

. é.pfl 2
B® =FE /(”n ZK(@@-)Q))) dalz
: =1

We have o,, > %Tﬂ and én > %Tﬂ on the w-set A, for any sufficiently

large n. Consequently &, > A\, = %Tﬂ for w € A,. Therefore, taking into
account that Ki(x) has the majorant Ky(z), we find

4
2

2
WA
nBY < Gy E W/(WZKO (An(a:—Xi))> de| <
(O i=1

2 4

SCSEl/Q <§_H>SPE1/2 / ()‘_Z iKO ()\n(x—XZ))> dx
n : n i=1

Now, basing on the method of the proof of (21) and on Lemma 2, we
conclude

4

. n 2
E /(%ZKO()W(J:—XZ-)O dz| =0(1).
: i=1
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On the other hand

8p _~ 18p . 8
E <§—”> < Cy+2%E [%} = Cy+ CoB |, — 0,] = o(1).

So

n (B,QU) = 0(1). (27)
Assume now
Ki(X) = [ Ko(V) Kol = V)av,
Then
2 2
1 n n . 1
BY<E e YN K§ (6 (Xi— X)) Iz, | <CnkE <€—nlzn> :

i—1 j—1
From the definition of 8277 and the fact that nb, > C > 0 we obtain
an = 0,07 > [ (k,s)]" (nby)" > (Cl(k,s))" = Cra # 0,

and o,, > C13. Therefore, &, > Cis.
Hence
n*'BX < C13nMp(4,).

But taking into account (16) we have
_ X 9 . 4
p(A,) < p{‘@n — 0] = 0, — 5} < CuuM |0, — 6| = O(r}) =

-0 (n7(25+p71)27)

for any sufficiently large n.
Hence

n*'BX = O(1). (28)

Finally, (27) and (28) imply (26). Therefore the theorem is proved. [
Note. It follows from (25) and decomposition of U(a2) that

Ulan) = U(a®) + o (n*—+) .
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